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The temporal and spatial behaviour of three-dimensional convection at infinite 
Prandtl number, in a rotating spherical fluid shell of radius ratio 7 = rJr, = 0.4, has 
been investigated numerically for a range of Taylor number for which m, = 2 , 3  and 
4 are the critical values of azimuthal wavenumber at  the onset of convection. When 
the Rayleigh number, R ,  exceeds a critical value, R,,, primary nonlinear solutions 
with the predominant wavenumber m, = 4 in the form of azimuthally travelling 
waves give way to secondary solutions in the form of steadily drifting mixed-mode 
convection with two predominant wavenumbers, m, = 2 and 4. The secondary 
bifurcation solution becomes unstable at another critical value, RZC, that leads to the 
tertiary solution in which the dominant wavelength of convection vacillates 
periodically between the two competing scales characterized by the azimuthal 
wavenumbers m, = 2 and 4. Instabilities and bifurcations associated with the 
evolution from a static state to wavenumber vacillation are discussed for a 
representative Taylor number of T = lo4. It is also shown that the interaction 
between the two spatially resonant wavenumbers m = 2 and 4 is much stronger than 
the interaction between the non-resonant wavenumbers m = 3 and 4 even though 
R,(m = 3) is much closer to R,(m = 4) than Rc(m = 2). For the convection of the 
dominant wavenumber m, = 2, the analysis is focused on the range of Taylor number 
T > T4, where T4 is the Taylor number at  which the critical wavenumber m, changes 
from 2 to 4 at the onset of convection. The m, = 2 steadily drifting nonlinear 
solutions, which are unstable at  small amplitudes owing to the Eckhaus-type 
instability, gain their stability at large amplitudes at R,, through nonlinear effects, 
and lose their stability at a higher Rayleigh number, RZc, to the amplitude- 
vacillating instability which leads to a periodic change in the amplitude of 
convection with little fluctuation in the pattern of flow. 

1. Introduction 
Buoyancy-driven convection in rotating spherical systems is associated with many 

basic geophysical and astrophysical processes in planetary fluid cores as well as in the 
atmospheres of the major planets. The understanding of convection in a rotating 
spherical shell is an essential step towards a full nonlinear theory of planetary 
dynamos (Zhang, Busse & Hircshing 1989). In fact, a nonlinear magnetohy- 
drodynamic dynamo solution can be treated as a new bifurcation branch in 
connection with a nonlinear convection solution. Such bifurcation analysis has been 
successfully used to obtain the full nonlinear dynamo solutions in a rotating spherical 
fluid shell (Zhang & Busse 1988, 1989, 1990). Interest in convection in the limit of 
infinite Prandtl number is particularly motivated by the compositional convection 
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in the Earth’s core which is likely to  drive the geodynamo (Braginsky 1963 ; Gubbins 
1977; Loper 1978). Furthermore, the limit of infinite Prandtl number forms the 
mathematically simplest and yet physically well-posed convection problem for 
rotating spherical systems. The interpretation of heat flux as the flux of light 
constituents, as well as the other motivations of studying the problem, has been 
particularly discussed in the previous work by Zhang & Busse (1990). 

Apart from its many geophysical and astrophysical applications, rotating spherical 
convection is of interest in fluid dynamics in general. Understanding of convection 
in a fluid layer heated from below has been fundamental in improving our 
understanding of complicated behaviour in fluid dynamic systems. We refer to Busse 
(1978) for a general discussion. Although a plane fluid layer provides a simple fluid 
dynamic system, the evolution of the pattern cannot be theoretically investigated 
readily because a continuous band of infinite modes in the neighbourhood of the 
critical mode may be excited. In  contrast, a rotating spherical fluid system has the 
advantage over a plane fluid layer in having the discrete integer wavenumbers 
arising from the spherical geometry and a small number of the excitable azimuthal 
wavenumbers in the neighbourhood of the critical mode arising from the influence of 
rotation. In addition, the time dependence of spherical convection in the form of 
azimuthally travelling waves appears a t  the onset of convection. However, the 
problem of convection in a rotating system with spherical geometry is very 
complicated. As a result of the coupling of spherical harmonics by the Coriolis force 
and the phase shift of convection rolls caused by spherical geometry, linear solutions 
in the form of either 

u - F(s )  G(z) exp ( i d  + imq5), 

or u - F(r )  G(B) exp ( i d  + imq5), 

corresponding to spherical cylindrical and polar coordinates respectively, are, in 
general, not permitted (Zhang 1991). The appropriate normal-form equations for a 
rotating spherical system are not feasible, and even linear analysis inevitably 
requires a numerical treatment. Furthermore, the linear solutions obtained from 
numerical analysis are complex, and cannot be approximately represented by a small 
number of modes. It is for this reason that the analytical approach widely adopted 
for the similar problems of other simple geometries such as a plane layer appears 
difficult to apply to  the problem treated in this paper. This paper presents the first 
attempt a t  determining the convective transitions from the first instability to 
spatially and temporally more complex convection flows in a rotating system with 
spherical geometry. 

Nonlinear convection in rotating spherical geometries has demonstrated complex 
temporal and spatial structures in direct numerical simulations for the solar 
convection zone at high Rayleigh numbers (Gilman 1977; Hart, Glatzmaier & 
Toomre 1986) and experimental investigations in the laboratory (Carrigan & Busse 
1983; Chamberlain & Carrigan 1986), and in the space shuttle Challenger (Hart et al. 
1986). Much of the behaviour is connected with the combined effects of spherical 
geometry and rotation, and is not currently understood. We have chosen the 
numerical bifurcation approach to tackle this nonlinear spherical convection problem 
with the aim of comprehending the basic instabilities and bifurcations which lead to  
the intricate behaviour of rotating spherical convection. The domain of parameters 
of the problem is restricted to one where convergent solutions can be obtained. 
Although the Taylor numbers considered are not sufficiently high for a realistic 
geophysical situation, which is not accessible because of our numerical approach and 
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the limitations of computer power, the primary effects of rotation on the convection 
are sufficiently large to illuminate the most important interaction imposed by the 
constraint of rotation and the nonlinearity of convection. 

Our discussions will be mainly concentrated on the second and third instabilities 
and the associated nonlinear bifurcation solutions at two representative Taylor 
numbers, T = 1 . 2 ~  103 and lo4, though the whole range of Taylor numbers 
0 < T < lo5 has been investigated. The critical azimuthal wavenumbers for the onset 
of convection are m, = 2 and 4 for T = 1.2 x 103 and lo4 respectively. The main 
features of the relationship of instabilities as well as their boundaries versus Rayleigh 
number R in their initial bifurcations are determined at these two Taylor numbers. 
We shall explore the transition from a relatively simple three-dimensional patfern 
with steadily drifting convective cells to a more complicated spatial pattern of 
mixed-mode drifting convection. We shall also examine the stability of steadily 
drifting mixed-mode convection, and investigate the transition from the drifting 
mixed-mode convection to wavenumber-vacillating convection. (The term vacillation 
was used by Hide (1958) to describe a steady repeating fluctuation of the drifting flow 
observed experimentally in a rotating cylindrical fluid system.) In particular, we will 
focus on how changes in the spatial structure of convection cells lead to a variation 
in temporal behaviour of the convection. Of particular interest is the stability 
behaviour of m, = 2 solutions, manifested in the competitive influences on the 
system of rotation and nonlinearity, where m, denotes the azimuthal wavenumber of 
predominant modes for a nonlinear solution. It will be shown that it is possible for 
the system at finite amplitudes to select the small wavenumber even when the large 
wavenumber is much more preferred on the basis of the linear stability analysis for 
the onset of convection. It is also shown that the interaction between the two 
spatially resonant wavenumbers m = 2 and 4 is dominant over the interaction 
between the non-resonant wavenumbers rn = 3 and 4 even though the critical 
Rayleigh number R,(m = 3) is much closer to R,(m = 4) than R,(m = 2). 

The remainder of the paper is laid out as follows. After presenting the mathematical 
formulation of the problem in $2, the onset of the first instability and the 
corresponding bifurcation solutions of nonlinear convection are briefly discussed in 
$ 3. The results of linear stability analysis for nonlinear steadily drifting solutions will 
be presented in $4. Stationary bifurcation solutions for mixed-mode convection as 
well as its stability properties will be shown in 95. In 96, vacillating tertiary solutions 
of nonlinear convection are described. The paper closes in 97 with the summary and 
discussion of the main features of our analysis. 

2. Mathematical formulation and method 
We consider nonlinear convection in a fluid spherical shell of constant thermal 

diffusivity, K ,  constant coefficient of thermal expansion, a, and constant viscosity, v. 
The whole system is rotating with a constant angular velocity a in the presence of 
its own gravitational field. The simplest heating model (Chandrasekhar 1961 ; 
Roberts 1968) in which the purely conductive state 

UT, = -Pr, 
where P is a constant, is produced by a uniform distribution of heat sources, is 
adopted. The fluid is assumed to be Boussinesq, consequently the velocity field can 
be written as a sum of poloidal and toroidal vectors 

u = U x U x rv -k U x rw. 
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By adopting d = ro - r,, d 2 / K ,  and /3d2 as scales of length, time, and temperature of 
the system respectively, it follows that the governing non-dimensional scalar 
equations are 

[ (v2-~~), ,+r$] , .v+~Q,, , ,0  = - - - . v x v x  r (U'VU),  
Pr 

[(,.-jg)L2+r$]w-TQu = - . v  r x (U.VU), Pr 

(v2-;)0+L2v = u - v o ,  (3) 

where the temperature deviation from T, is denoted by 0. In spherical polar 
coordinates ( r ,  0, $) with the polar axis in the direction of rotation, the operator L,, 
the negative Laplacian on the unit sphere, is defined as 

The differential operator Q introduced by Roberts (1968) is 

where k is an unit vector parallel to the axis of rotation. The system (1)-(3) is 
characterized by three dimensionless parameters, the Rayleigh number R, the 
Prandtl number Pr and the Taylor number T, defined as 

Q = k- V -$(Lz k. V + k. VL,), 

Henceforth, all variables will be presented in dimensionless form. In the limit of 
infinite Prandtl number Pr, the only nonlinearity of the problem is produced by the 
advection term in (3).  The assumptions of impenetrable, perfectly thermal 
conducting, and stress-free boundaries impose the following conditions at  the inner 
and outer bounding spherical surfaces : 

at r, = r/(l-r) and ro = 1/(1 - r ) ,  where 7 is chosen equal to 0.4 throughout, which 
is appropriate for the Earth's core. The boundary condition a@/& = 0 at r = ro 
(which is more appropriate for modelling convection driven by chemical buoyancy) 
was not chosen so that a comparison with earlier studies of the same model with 
moderate Prandtl numbers can be readily made. 

The Galerkin spectral method is employed in our numerical analysis. The three 
dependent variables are represented in terms of complete systems of functions with 
the radial functions satisfying the boundary conditions, 

0 = C Olmn sinn7c(r-rr,) Y~(O,#-ct)+c.c., 

v = vlmn sinn7c(r-rr,) Y~(O,$-ct)+c.c., 

w = C wlmnr cosn7c(r-rri) Y?(~,$-C~)+C.C. ,  

1,m.n 

Lm,n 

Lm,n 

where c is the drift rate of a solution. The coefficients Olmn, vlmn and wlmn are complex 
and time independent for steadily drifting solutions, but they are function of the time 
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t in the case of vacillating convection. The C.C. denote complex conjugate, which 
should be included in the expansions for nonlinear solutions and excluded for linear 
calculations such as linear stability analysis. For obtaining an approximate numerical 
solution, we have introduced the triangular truncation scheme in which all 
coefficients with indices satisfying 

l- jm0+2n+2j > 2Nt+3 
are neglected, where m = jm,, and m, is usually related to the dominant azimuthal 
wavenumber of a nonlinear solution. Most of the calculations reported in this paper 
use the truncation parameter Nt = 4 which is sufficient at  least for accuracies of order 
5 %  for the parameter range treated. The results were verified by increasing the 
spatial resolution of the solutions as we will discuss in the text. 

The analysis is conducted in four stages. First, the convective instability in terms 
of the critical parameters R,, T, m, is analysed. The linear results can serve as an 
important guide for choosing parameters, such as the predominant wavenumber, in 
the computation of primary nonlinear solutions. In the second stage, the primary 
solutions describing steadily azimuthally drifting rolls of convection are calculated 
with a Newton-Raphson iteration scheme. For the third stage, stability of the 
primary solutions is investigated by superimposing infinitesimal three-dimensional 
general perturbations such as 

o = C Bzmn sin nn(r - r i )  yye, + -ct) exp ( i ~ +  + gt ) ,  

onto the steadily drifting solution, where exp(%+) is the Floquet factor, and the 
parameter M is an integer which varies between 0 and m, - 1. Similar expansions are 
assumed for the velocity fields v and w. The disturbances are truncated at the same 
level as for the corresponding nonlinear solution. By neglecting self-interactions of 
the perturbations, and subtracting the equations for the steadily drifting solution, 
the perturbed system is described by the following linear homogeneous equations : 

- 
Lm,n 

[v'L2+7$]v28+7&2--RL2& = 0, 

[vPL2+~&]z.Z-7Q8 = 0, 

(4) 

( ~ 2 -  cr+ic)& + L, V" = u -  V& + i i - v ~ .  (6) 
These equations form an eigenvalue problem with eigenvalue u = u,+ivi. The 
largest real part of u represents either the growth or decay rate of the disturbance, 
that is, stability of the nonlinear convection flow. The imaginary part of the 
eigenvalue usually suggests either a steady or an oscillatory bifurcation of the new 
solution. If the imaginary part of u is zero, the new branch of nonlinear convection 
corresponding to the instability may be obtained by the same procedure as in stage 
two. Otherwise, vacillating convection solutions are found by time-integration of 
(1 )-( 3) with the implicit Crank-Nicolson scheme. 

3. Onset of convection and primary nonlinear solutions 
Owing to the rotational constraint, the critical Rayleigh number R, and critical 

wavenumber m, required for convective instabilities increase with the asymptotic 
law (Roberts 1968; Busse 1970) 

R, = O(T$ m, = O ( @ )  
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FIGURE 1. Instability curves at T = lo4 are shown for both the equatorially symmetric (solid line) 
and antisymmetric (dotted line) modes. The numbers indicate the oscillation frequencies at the 
onset of convection for the corresponding wavenumber. 

a t  large Taylor number. At a particular Taylor number, the preferred scale of motion 
described by an azimuthal wavenumber provides a sufficient pressure gradient to 
balance the Coriolis force with minimum dissipation. The instability curves in the 
range of azimuthal wavenumbers m from 1 to 9 with respect to  both the equatorially 
symmetric mode 

(u7, ue, us) ( T ,  6, $1 = ( u r ,  -ug, us) ( r ,  n-6, $), 
and the equatorially antisymmetric mode 

(ur, Ue,UC) ( r ,  6,  $) = ( -ur,  ug, -us) ( r ,  n-8, $1, 
are illustrated in figure 1 for T = lo4. It is clear that  the wavenumber m = 4 is at the 
minimum of the marginal stability curve, 

R,(m = 2) > R,(m = 5) > R,(m = 3) > R,(m = 4). 

It is of interest to note that owing to the combined effects of spherical boundaries and 
rotation, the form of convective instability is a travelling wave propagating in the 
azimuthal direction that is determined by the value of Taylor number, T, and the 
azimuthal wavenumber (Gilman 1975). I n  contrast to  the non-rotating convection, 
an important feature of the finite-amplitude solution is a steady drift of the whole 
pattern relative to  the rotating frame. Primary bifurcation solutions can, however, 
be made steady if we transform from the rotating frame to  a reference frame moving 
with the drifting rate of convection, c. This form of motion will be referred to as 
steadily drifting convection. 
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FIGURE 2. (a) Meridional circulation (on the right-hand side), and contours of the differential 
rotation (on the left-hand side) in a meridional cross-section, and (b) lines of constant toroidal 
function w on the outer surface of the fluid shell are shown for T = lo4, R = 2950 and m, = 2 ; (c) 
and (d) are the same as (a) and (b) but for m, = 4. The solid contours of the zonal flow indicate 
eastward azimuthal motion and the dashed contours denote westward motion. 

Since a three-dimensional nonlinear solution is composed of three scalar functions 
without exact stream functions, it is difficult to clearly illustrate a solution of 
complicated nonlinear convection with only a small number of figures. However, it 
appears that the toroidal stram function w and the contours of heat flux H ,  = - a@/ar 
both plotted on the outer spherical surface of the fluid shell can be used to show 
general features of the convection pattern, and that streamlines of axisymmetric 
poloidal flow 
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and the contours of axisymmetric toroidal flow 

in a meridional cross-section can be used to demonstrate the average features of the 
flow. The radial component of velocity u, = L2w/r on a spherical surface in the fluid 
shell within the range of parameters studied is well correlated with the field of heat 
flux -a@/& on the outer surface of the shell, that  is, hot fluid rises while cold fluid 
sinks. Consequently, the plot for poloidal radial flow on a spherical surface in the 
fluid shell can be omitted without losing any information on poloidal flows. Thus, in 
this paper four different figures, two on the outer surface and two on the meridional 
cross section, in the drifting frame of reference in which the solution is either 
stationary or vacillatory, are chosen to  represent the principle spatial features of a 
nonlinear solution. 

Multiplicity of steady solutions is a typical feature of the nonlinear convection 
which can sometimes provide valuable insight into the more complicated states, as 
we will discuss in $6, where convection vacillates between two competing states 
characterized by different dominant wavenumbers. For the same parameters, 
R > 1994 and T = lo4, the m, = 4 nonlinear solutions can bifurcate from the most 
unstable mode with m, = 4 a t  R, = 1697, while the m, = 2 solutions can bifurcate 
from the higher mode with m, = 2 at  R, = 1994. In  figure 2, the two primary 
solutions a t  T = lo4 and R = 2950 with the different dominant wavenumbers m, = 2 
and 4 are chosen as a typical example to illustrate their different structures. The 
difference in the characteristics of non-axisymmetric components shown in figure 
2 ( b ,  d )  is as expected from the linear theory. Especially noticeable in the figures, 
however, is the axisymmetric structure, where a predominant single-cell thermal 
wind develops in the lower latitude for the m, = 2 solution while the meridional 
circulation with a double-cell structure in mid-latitude characterizes the m, = 4 
solution. The axisymmetric azimuthal flows generated by the interaction of the 
meridional flow and the Coriolis force display accordingly the different structure in 
higher latitude. 

4. Instabilities of steadily drifting convection 
Nonlinear primary solutions bifurcating from the trivial solutions of instabilities 

are usually dominated by the modes that are most unstable at the onset of 
convection. One of the interesting questions in nonlinear convection is how the 
nonlinear processes overcome various constraints associated with the effects of 
rotation. The instability analysis of the nonlinear solutions will shed some light on 
the answer because the form of new bifurcation solutions can usually be inferred from 
the structure and the symmetry of the most rapidly growing perturbation. 

The loss of or change in symmetry of a solution arising from instabilities and the 
nature of the new bifurcating solutions are often closely related. It has been shown 
that a proper understanding of the nature of symmetry breaking in a simple plane 
layer geometry can be very complex, and requires a group-theoretical approach 
(McKenzie 1987). In  comparison, rotating spherical convection has much simpler 
symmetry properties which are of great advantage for numerical treatments of the 
problem. A primary solution bifurcating from the spherically symmetric static state 
possesses three basic symmetries : the symmetry with respect to the equatorial plane, 
the symmetry with respect to azimuthal periodicity in connection with an azimuthal 
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wavenumber m, and the time symmetry in the sense that solutions are steady in the 
reference of a drifting frame. Accordingly, solutions of the stability analysis for the 
system of equations (4)-(6) can be separated into three classes. The first class of 
perturbation, which is antisymmetric with respect to the equatorial plane, is unlikely 
to be significant in the region of parameter space treated in this paper as clearly 
shown in figure 1. Disturbances of the second type possesses the same symmetry and 
same spatial structures as the corresponding nonlinear solution, and are characterized 
by the parameter M = 0. The instability in connection with the latter type of 
disturbances usually leads to a vacillating convection through Hopf-type bifurcation 
from steadily drifting convection. However, the Eckhaus-type instability also could 
occur for this class of disturbances because the wavenumbers m = jm,, where j is an 
integer, are included in the nonlinear calculation. The third class of solutions for 
(4)-(6) differs from the second in that the growing perturbation, with a finite value 
of the parameter M ,  tends to change the spatial scale and structure of the steadily 
drifting convection. 

To investigate the stability of m, = 4 nonlinear travelling wave solutions at  
T = lo4, which bifurcate from the most unstable linear mode, three different types 
of the equatorially symmetric disturbances as well as the equatorially antisymmetric 
disturbances have been used to perturb the nonlinear solutions. With M = 0, the 
azimuthal wavenumbers of the related disturbance rl include 

m=0,4,8,12 ..., 
and the disturbance ii with M = 2 includes 

m = 2,6,10,14 ... 
in the expansions. The disturbances described by M = 1 and M = 3 are identical and 
contain the following wavenumbers 

m = 1,3,5,7 ... 
The largest growth rate, mr, of the infinitesimal perturbations corresponding to 
M = 2 and 3 for the m, = 4 nonlinear solutions at T = lo4 is displayed as a function 
of R in figure 3. The instability boundaries corresponding to M = 0 and the 
antisymmetric perturbation are at much higher values of R ,  and are therefore not 
shown in the figure. The results of the stability analysis meet the expectation that 
the interaction between the two spatially resonant wavenumbers m = 2 and 4 is 
much stronger than the interaction between the non-resonant wavenumbers m = 3 
and 4. For a Rayleigh number R slightly above the critical value R,, the system 
(4)-(6) with different M describes approximately the linear onset of convection. The 
linear behaviour that R,(m = 3) is much closer toR,(m = 4) thanR,(m = 2) as shown 
in figure 1 is clearly manifested in figure 3. As the amplitude of the nonlinear 
solutions increases, the perturbation dominated by m = 2 modes grows much faster 
than the one dominated by m = 3. All initial infinitesimal disturbances characterized 
by M = 3 to the m, = 4 nonlinear solutions are damped and decay to zero with 
increasing time in the parameter range considered in this paper. The odd- 
wavenumber modes have therefore been disregarded for the non-linear solutions of 
higher bifurcations. The fastest growing M = 2 disturbance and its associated 
structure indicate that the additional scales characterized by the prevailing 
azimuthal wavenumber m = 2 will be introduced to the primary solutions by the 
instability. Of particular interest, however, is that the largest growth rate of the 
infinitesimal perturbation is real, that is, mi = 0. Therefore, the spatial symmetry is 
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FIGURE 4. Real part of the growth rate cr as a function of Rayleigh number R from the linear 
stability analysis for T = lo4 and m, = 2. Curve I represents the instability due to the most rapidly 
growing m, = 4 disturbance and curve I1 the amplitude-vacillation instability. 

growth rate, IY, of the disturbance related to the Eckhaus-type instability can be 
approximately given by 

where c2 and c4 represent the drifting rate of m, = 2 and m, = 4 nonlinear convection. 
For instance, c2 = 4.66 and c4 = -0.19 for T = lo4, R = 2200, gives the predicted 
imaginary growth rate qi = 19.5 while the actual value from the instability analysis 
is I Y ~  = 20.49. The most interesting feature of this stability analysis is the decreasing 
growth rate I Y ~  (line I in figure 4) with increasing Rayleigh number R.  When 
R > 2900, the perturbations characterized by a fastest growing mode with m = 4 
decay in time, that is, the m, = 2 nonlinear solutions which are unstable at small 
amplitudes become stable a t  larger amplitudes. The essential aspect of this 
behaviour is the competitive constraints imposed by rotation and the nonlinearity of 
the flows. The most unstable linear wavenumber of the system is chosen as the 
optimum balances among the Coriolis force, the pressure gradient and the viscous 
dissipation with the spherically symmetric buoyancy force. It seems most likely that 
the nonlinear modification to the spherically symmetric temperature distribution, 
which promotes the axially symmetric distribution, provides the key influence of 
finite-amplitude effects. As the new distribution of buoyancy forces drives convection 
more effectively, the large scale convection with mo = 2 eventually gains stability 
through nonlinearity even when the m, = 4 solution is much preferred at the onset 
(see figure 1). As the Rayleigh number, R, further increases, the stable m, = 2 drifting 
solution loses its stability at about R = 3400, represented in curve I1 of figure 4, to 
the amplitude-vacillating instability that leads to a periodic fluctuation in the 
amplitude of flows but with little change in the shape of convection pattern. The 
behaviour of this instability is the same as for the instability of the m, = 2 solution 

(Ti = m(c,-c,), 
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FIQURE 5. Stability diagram for m, = 2 solutions. The dashed curve corresponds to the stability 
gained owing to nonlinearity, and the solid curve indicates the amplitude-vacillating instability. 

at a lower Taylor number. The eigenfunction associated with the most rapidly 
growing mode displays the same structure as the m, = 2 primary solution, which 
suggests an amplitude-vacillating solution for the higher bifurcation. 

After showing the instabilities a t  a representative Taylor number, it would be 
profitable to see the dependence of instabilities on the Taylor number. The stability 
diagram for the m, = 2 steadily drifting solutions is shown in figure 5 in which the 
supercritical Rayleigh number (R - R,)/R,  is plotted against Taylor number T. The 
instability curves are based on extensive computations for nonlinear drifting 
solutions at the Taylor numbers T = lo3, 1.2 x lo3, 2.0 x lo3, 4.0 x 103, 6.0 x lo3, 
lo4, 2.0 x 104 and 5.0 x 104. About 20 nonlinear solutions for each Taylor number 
have been obtained for the Rayleigh numbers R, < R < 3R,. The stability analysis 
is performed on every solution, and the results are used to extrapolate the actual 
instability boundaries. In figure 5, T4 indicates the critical Taylor number beyond 
which the m, = 4 solutions become preferred according to the linear theory. The 
dashed curve corresponds to the boundary of stability resulting from the finite- 
amplitude effects of convection. This new stability is referred to as the stability of 
pnite amplitude. The amplitude-vacillation instability is given by the solid line. The 
steadily drifting convection with the predominant wavenumber m, = 2 is stable with 
respect to the even-wavenumber disturbances within the parameter space bounded 
by the dashed and solid curves. However, the domain of stable m, = 2 solutions is 
likely to be more restricted if the disturbances with M = 3 are admitted. Within the 
region of the dashed curve and the line of (R-R,) /R,  = 0,  the steadily drifting 
convection with m, = 4 can be stable. Because of the stability of finite amplitude, the 
wavenumber of the most unstable mode at the onset of convection does not 
necessarily correspond to the dominant wavenumber of finite-amplitude convection, 
even a t  weak nonlinearity. For instance, a t  the Taylor number T = 3T,, the m, = 2 
solution gains stability a t  R = R,+O.LR,. It has been reported in many laboratory 
experiments on rotating fluids (e.g. Hide & Mason 1975 ; Chamberlain & Carrigan 
1986) that the observed dominant wavenumber m, observed at finite supercriticality 
is smaller than the theoretically predicted values even though the critical parameter, 
such as the critical Rayleigh number R,  is in a good agreement with the linear theory. 
Discrepancies between the experiments and theory are likely to be attributable to 
the stability of long-wavelength solutions gained by nonlinear effects on rotating 
fluid systems. The parameter range of stable nonlinear convection with the dominant 
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wavenumber mo = 2 appears to be much wider than that predicted from the linear 
analysis owing to the stability of finite amplitude of convection. 

5. Steadily drifting mixed-mode convection and its stability 
The linear stability analysis of the previous section suggests that mixed-mode 

solutions with two competing scales of convective cells emerge from the m, = 4 
drifting solution. Secondary bifurcation solutions in the neighbourhood of the 
bifurcation point may be assumed to have the form 

u = U , + E i i ,  (7) 
where the ii is the eigenvector associated with the strongest growth rate of the 
perturbation and E is a small parameter that depends on the supercritical Rayleigh 
number R-R,,. R,, denotes the critical Rayleigh number for the instability of 
steadily drifting convection determined by the linear stability analysis. We have 
taken E = C(R-R,,)i, where C varies between 0.001 to 0.1, depending on the 
parameters T and R. Iterating (1)-(3) with the Newton-Raphson method by 
changing the parameter E ,  a new form of steadily drifting solution can be obtained 
if (7) gives rise to an approximate solution of the new branch. The value of the 
parameter E usually indicates whether the bifurcation is supercritical or subcritical. 
If the bifurcation is supercritical, the stability of solutions determined by the linear 
stability analysis in the previous sections is both necessary and sufficient. We found 
that the iterating parameter E can be set to be numerically approaching zero for a 
correspondingly small positive value of the supercritical Rayleigh number 
R - R,, = E2/C2. The bifurcation is apparently supercritical. Otherwise a negative 
value of E2/C2 must be used for iterations for a subcritical bifurcation as shown in the 
case of lower Prandtl numbers (Zhang & Busse 1988). Once we have a first secondary 
solution, other solutions in the parameter space can be easily and cheaply generated 
by iteration toward the neighbouring parameters of the system. 

An impression of the pattern of the new solutions can be gained from figure 6 at 
T = lo4 and R = 2950. Since the parameters of the solutions used in figure 6 are 
precisely the same as in figure 2, the differences among these three nonlinear 
solutions which are dominated by either m, = 2 or 4, or by the combination of m, = 2 
and 4, are clearly illustrated by comparing these figures. From the figures it can be 
seen that the profile of the mixed-mode convection, as we should expect, is 
eventually a combination of the patterns of m, = 2 and 4 nonlinear solutions. The 
pattern of heat flux in figure 6 (a) displays the typical features of the m, = 4 solution 
which is dominated by the modes of the azimuthal wavenumber m = 4, while the 
non-axisymmetric structure of the toroidal flows is clearly dominated by the modes 
of the m, = 2 solution. The meridional circulation shown in figure 6 (c) resembles the 
profile of the m, = 2 convection. Accordingly, there is very little difference between 
the mean zonal flows of the mixed-mode solution and that of the m, = 2 solution. 
Further comparison of the three types of solutions can be made by considering global 
properties which measure the vigour of nonlinear motion. Introducing the average 
kinetic energy density of different components of velocity u, 

(8) 
(9) 

(11)  

E, = r$ (dv) V x rm-V x rm, 
8, = r$ (dv) V x r63-V x r 8 ,  
E, = r s (dv )Vxrv -Vxre ,  (10) 
8, = rS (dv) V x rv". V x rv", 
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FIGURE 6. The pattern of a mixed-mode solution is shown for T = lo4 and R = 2950. (a) shows 
contours of the heat flux on the outer surface; ( b )  and (c) are the same as figure 2(a ,  b )  but for the 
mixed-mode solution. 

where r = 3( 1 - ~ ) ~ / 2 7 ~ (  1 - r3),  and the overbar indicates the axisymmetric com- 
ponents of flow and the tilde the non-axisymmetric components. The j(dv) represents 
the integral over the spherical fluid shell. The measure of heat transfer by convection 
can be provided by the total outer heat flux 

H ,  =-a(@)/& 
at r = r,, the symbol ( ) denoting the integral over the surface of the fluid shell. Its 
relationship with the outer Nusselt number Nu, is 

NU,= l + ( l - ~ ) H , .  

The spectrum of kinetic energy densities of various components as well as the heat 
flux H, for the three steadily drifting nonlinear solutions for the same parameters a t  
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Energy 
Ev,m = O 
Ev,m = 2 
E,,m = 4 
E,,m > 4 
EW,m = O 
<,,m = 2 
E,,m = 4 
E,,m > 4 
H O  

m, = 2 
0.04 
9.87 
0.56 
0.13 
0.88 

34.24 
0.93 
0.07 
0.12 

m, = 4 

0.14 
0 

14.79 
0.25 
0.22 
0 

25.70 
0.07 
0.22 

Mixed-mode 
0.03 
3.15 
7.03 
1.33 
0.46 

10.27 
12.46 
0.89 
0.16 

TABLE 1. Energy spectra and heat flux for the three different nonlinear solutions at T = lo4 
and R = 2800. Quantities are defined in equations (8)-(11). 

N, Re? "c RC, ui2 Ho(R = 2800) u,(R = 2800) 
3 1698.1, - 1.936 2648 9.4 0.157 8.02 
4 1696.8, - 1.895 2716 9.1 0.160 7.85 

6 1697.0, - 1.888 2709 8.6 0.162 8.05 
TABLE 2. The convergence behaviour with increasing truncation parameter N,. u , ~  represents the 
imaginary part of growth rate for the most rapidly growing disturbances at Rc2. H ,  is the outer heat 
flux of the mixed-mode solution, and u,, is the frequency of wavenumber-vacillating convection 
obtained from numerical integration. 

5 1697.1, -1.886 2704 8.7 0.167 7.90 

R = 2800 and T = lo4 are shown in table 1. The Rayleigh number is chosen to be near 
its instability boundary for both the m, = 2 and mixed-mode drifting solutions. The 
energy spectra display a distinct change of character between the secondary mixed- 
mode convection and the m, primary solution, though both are steadily drifting with 
constant amplitude. The main features of the spectra are consistent with those 
reflected in the pattern of the nonliner flows displayed in figures 2 and 6. The kinetic 
energies of the m, = 2 and 4 solutions are dominated by the contributions from their 
fundamental modes, and the higher modes m > m, have less than 5% of the total 
energies. For the mixed-mode solution a considerable amount of kinetic energy is 
transferred from the m = 4 to the competing scale (wavenumber m = 2) of the flow. 
The kinetic energies contained in competing wavenumbers m = 2 and m = 4 are 
comparable. It is also of interest to note that both the toroidal and poloidal 
axisymmetric components of the mixed convection are dominated by the mode of the 
m, = 2 solution, although the kinetic energy contained in the modes of m = 4 is 
larger than that of m = 2. 

Close competition between the two fundamental modes suggests that the mixed- 
mode solution will lose stability as R increases further. In attempting to find the 
stability properties of mixed-mode convection, the computations to obtain many 
mixed-mode solutions for different Rayleigh number R are first carried out. This is 
followed by linear stability analysis for every solution. The actual stability 
boundary, denoted by RZc, can then be interpolated. The convergence behaviour of 
the solutions is displayed in table 2. The refinement of accuracy at  the Nt = 6 
truncation level, which includes about five times the number of modes as the Nt = 3 
truncation level, shifts the instability boundary slightly without affecting the whole 
structure. The convergence of the nonlinear solution as well as its stability boundary 
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are quite convincing. The largest real part of the eigenvalues from the stability 
analysis of mixed-mode solutions as a function of R is shown in curve I11 of figure 
3. This instability is very robust, and is a result of the strongly growing competing 
mode associated with the wavenumber m = 2 which indicates the transition from a 
steady mixed-mode drift state to a wavenumber-vacillating state. 

6. Convection with vacillating wavenumber and amplitude 
The iteration method cannot be used to calculate a vacillating solution, because of 

the second frequency of the system introduced by the wavenumber- or amplitude- 
vacillating instability. In the limit of infinite Prandtl number, the implicit time-step 
scheme must be used as the velocity u responds instantaneously to variations in the 
temperature field, 0. The time-step, At, is kept small enough to ensure accuracy, 
while adequate resolution of the vacillating solutions is checked by increasing the 
number of harmonics included (table 2), as well as different values of the time-step 
At. Taking 

u(t = 0) = u, +€US 

as an initial condition for the time integration of (1)-(3), where u, is either an 
unstable mixed-mode or an unstable m, drifting solution slightly above the 
instability boundary. Here us represents the fastest growing disturbance from the 
results of stability analysis. Once the initial transient period is over, time-dependent 
convection settles down to a periodic vacillation, the period of which is approximately 
given by p ,  = 27c/ui, where ui is the frequency of the most rapidly growing 
disturbance as predicted from the stability analysis. After the first time-dependent 
solution is obtained for a small value of the supercritical Rayleigh number R-R,,, 
it is used as the initial condition for a vacillating solution with different neighbouring 
parameter values. 

The instability of mixed-mode solutions leads to the tertiary bifurcation in which 
the predominant wavenumber m, varies periodically between two competing 
neighbouring wavenumbers, m, = 2 or 4, while the whole pattern of the solution 
drifts in the azimuthal direction. Our integration indicates that the Hopf-type 
bifurcation is apparently supercritical. In the immediate neighbourhood of 
supercritical bifurcation, at R = R,, + e2/C2, the kinetic energy and the heat flux H ,  
oscillate slightly about the value of the mixed-mode drifting solution. The vacillation 
grows in amplitude as R increases. By R = 2800 a t  T = lo4 the value of the heat flux 
H ,  varies by 50 % during a period of oscillation. The phenomenon of the convection 
with vacillating wavenumber is perhaps most clearly illustrated by separating the 
m, = 2 and m, = 4 contributions, as shown in figure 7 ( a )  for R = 2950 and T = lo4. 
The kinetic energies of the m, = 4 mode (solid curves) reach their maxima while those 
for the m, = 2 mode attain their minima (dashed curves), and vice versa. 

Having briefly described the phenomenon of wavenumber vacillation, let us 
examine the detailed patterns of the wavenumber-vacillating solutions. Figures 8 
and 9 illustrate the typical convection patterns a t  almost equally spaced instants in 
time during a complete oscillation a t  R = 2950. It should be noted that the whole 
pattern in these figures drifts azimuthally at a phase speed c = 4.0 while the pattern 
of flows presents a periodic time dependence in which the convection vacillates 
between the two gtates with typical wavelengths 2r, 7c/2 and 2r, n/4. Because the 
fundamental harmonic modes q,B and Yt,B are coupled nonlinearly, the evolution of 
convection enhances one mode a t  the expense of the other mode. Comparing the 
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36 1 m = 4  

Time 
FIQURE 7. The kinetic energies as a function of time for (a )  the wavenumber-vacillating solution 
at T = lo4, R = 2950, and ( b )  the amplitude-vacillation solution at T = 1.2 x 10s and R = 1840. The 
dashed lines represent the m = 2 contribution while the solid lines show the m = 4 contribution. 

axisymmetric zonal flows and the meridional circulation in figure 9 with the m, = 2 
and 4 solutions illustrated in figure 2, the vacillation of convective pattern between 
the two states of the m, = 2-type and the m, = 4-type is quite clearly depicted. The 
meridional circulation of the vacillation a t  t = 3p0/4 is almost, although not exactly, 
the same as the circulation pattern of the m, = 2 steadily drifting convection. At 
t = p,/4, the profile of convection is similar to that of the mo = 4 solution. The flow 
at this instant is apparently dominated by the m = 4 mode, and the corresponding 
kinetic energies attain their peaks. When the kinetic energies of the m = 4 mode 
reach their minima the pattern of convection displays the m, = 2-type solution. The 
spectra of kinetic energy at  the instants of peaks and minima are given in table 3. 

In  order to contrast wavenumber-vacillating convection with amplitude-vacil- 
lating convection which is associated with the instability corresponding to the solid 
curve in the stability diagram in figure 5, we display one time series of amplitude- 
vacillating solution, again with the m, = 2 and 4 contributions separated, a t  
T = 1.2 x 103, R = 1840 and m, = 2 in figure 7 ( b ) .  Many amplitude-vacillating 
solutions have been obtained, and they show a very similar behaviour to the case 
illustrated. A periodic variation in the amplitude of drifting convection constitutes 
an amplitude vacillation. The corresponding pattern of flow changes very little 
during the vacillation except for a relatively large fluctuation in the non- 
axisymmetric poloidal component which is associated with the heat transport. 

The phenomena of amplitude and wavenumber vacillation in baroclinically driven 
flows have been observed in carefully controlled rotating-fluid-annulus experiments. 
We refer to the review paper by Hide & Mason (1975) for a detailed discussion. A 
direct comparison between experiments and our analysis is not feasible. However, 
the basic dynamics in our system and experiments are both constrained by the 
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FIGURE 8. Contours of toroidal function w on the outer surface of the fluid shell at almost equally 
spaced instants in time during a complete vacillation for T = lo4 and R = 2950 seen from the 
drifting frame with a rate c = 4.0. (a), ( b ) ,  (c), (d )  correspond to the instants at t = ipO,*, i = 0, I ,  2,3, 
respectively. 

Coriolis force, and i t  seems plausible that the physical mechanisms underlying the 
amplitude and wavenumber vacillations observed in rotating annulus experiments 
are similar to those described in this paper. 

Coupled nonlinear amplitude equations have been widely used to describe the non- 
linear interaction of convective modes of different wavenumbers (e.g. Proctor & 
Jones 1988). Our results, particularly figure 7, suggest that a similar semi-analytical 
approach, in which linear solutions and coefficients of the cubic terms of the 
amplitude equations are obtained numerically, may be useful but this has not been 
attempted. Furthermore, the convection with vacillating wavenumber and ampli- 
tude described in this paper can be understood within the framework of the 
coupled amplitude equations for a much simpler system (e.g. Dangelmayer & 
Knobloch 1987). Our steadily drifting nonlinear convection corresponds to the 
travelling wave solution introduced by the first Hopf bifurcation (the onset of 
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FIQURE 9. Same as figure 8 except for the differential rotation (on the right-hand side) and the 
meridional circulation (on the left-hand side) at a meridional cross-section. 

Energy 
t V , m  = O 
E,,m = 2 
EV,m = 4 
Ev,m > 4 
E,,m = O 
E,,m = 2 
E,,m = 4 
Ew,m > 4 

At minimum At maximum 
0.02 0.118 
5.39 0.581 
4.02 18.46 
1.28 0.499 
0.54 1.006 

17.80 1.97 
7.27 33.00 
0.72 0.23 

TABLE 3. Energy spectra for wavenumber-vacillating convection at T = lo4 and R = 2950 at 
two instants in time corresponding to the figures a@), 9(b) and 8(d ) ,  9(d) 
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convection). The convection with vacillating wavenumber and amplitude (the 
modulated waves) is introduced by the secondary Hopf bifurcation (wavenumber- 
and amplitude-vacillating instabilities) with an explicit time dependence. The 
amplitude-vacillating convection represents a travelling wave weakly modulated by 
the second travelling wave with a different wavenumber ; the wavenumber- 
vacillating convection is a result of the strong nonlinear interaction of the two 
travelling waves with different wavenumbers (figure 7) .  

7. Summary and concluding remarks 
We have investigated the temporal and spatial behaviour of three-dimensional 

convection for a rotating spherical fluid shell in the limit of infinite Prandtl number. 
The main features of the instabilities and the bifurcation solutions at two 
representative Taylor numbers were determined for moderate Rayleigh numbers 
R < 2R,. The associated bifurcation structure has been followed in some detail for 
the case of T = lo4. The main results at T = lo4 are summarized in the bifurcation 
diagram in figure 10. The steadily drifting primary solution with m, = 4, denoted by 
the M ,  branch, with a relative simple spatial pattern, loses its stability which leads 
to the steadily drifting branch M,, with a much more complicated spatial structure 
involving the two competing dominant wavenumbers m, = 2 and 4. The amplitude 
and heat transfer for both branches are independent of time. The branch V,, emerges 
supercritically from the steadily drifting mixed-mode branch and is characterized by 
the vacillation between the two competing scales of spatial structures. Since the 
Nusselt number Nu, is a function of time, the value shown in the bifurcation diagram 
is averaged over the period of vacillation. The amplitude-vacillating solution is 
represented by the branch V,. 

The fact that stable branch M ,  exists a t  large amplitudes for a high supercritical 
Taylor number T > indicates that the competition between the constraints of 
rotation and nonlinear modifications of the spherically symmetric driving forces can 
be of fundamental importance in determining the behaviour of nonlinear convection 
in a rotating system. The comparison of the branches M4,  M2, and V,, yields the 
interesting result that the heat transport by convection does not play a critical role 
in the stability and character of rotating nonlinear convection. The predominant 
modes for the branches M,,, M ,  and V,, are not associated with the most unstable 
modes a t  the onset of convection as in the case of non-rotating spherical convection 
(Young 1974). Direct comparisons with the previous numerical studies cannot be 
made because of the limit of infinite Prandtl number and lower Rttyleigh numbers. 
However, it should be noted that some of the complicated behaviour in rotating 
spherical convection can be understood in terms of a variety of instabilities that 
break various symmetries of the convection and occupy available degrees of freedom, 
in analogy with the various transitions in plane layer convection. Because the 
number of symmetries in rotating sphere is small and the wavenumbers are integer, 
following the evolution of nonlinear convection in rotating spherical systems can be 
numerically much simpler than in a fluid layer. 

The system also displays a rich time-dependent behaviour with a transition from 
the wavenumber vacillation through a period-doubling cascade to chaos when a 
lower value of the truncation parameter Nt is used. However, as we refine the 
resolution of solutions, we find the wavenumber vacillation unchanged but the 
period-doubling bifurcation disappears. Transition to quasi-periodic and chaotic 
behaviour appears to be sensitive to the higher-order harmonics though they 
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FIQURE 10. Bifurcation diagram for T = lo4. Solid lines correspond to stable solutions, and dashed 
curves indicate unstable branches. Sequence I: stable steadily drifting convection with m, = 4 
(M4)  =- stable mixed-mode convection (M24) - wavenumber-vacillating convection (V,,). Sequence 
I1 : unstable steadily drifting convection with m, = 2 * stable steadily drifting convection (M,) 
with m, = 2 amplitude-vacillating convection (V,). All bifurcations are found to be supercritical. 

contribute only a small fraction of the total kinetic energy of convection. We have 
not yet sought time-dependent solutions beyond R = 3000 at a higher level of the 
truncation owing to the very large amount of computer time and storage required. 

The only nonlinearity of the problem in the limit of infinite Pr is from the 
advection of temperature 0 by the flow u. An important question to be answered is 
whether or not the vacillation phenomena studied in this paper have some bearing 
on the general behaviour of the convection of rotating spherical fluid. Plans for 
future research will consist of an extension of the studies to moderate or smaller 
Prandtl numbers in which the momentum advection term plays a important role ; 
another important extension for future research will be to solve the problem of 
convection at  much higher, geophysically relevant, Taylor numbers. 
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